A pr 1 99 4 Electronic structure calculations and molecular dynamics simulations with linear system - size scaling Francesco Mauri and Giulia Galli

نویسنده

  • Giulia Galli
چکیده

We present a method for total energy minimizations and molecular dynamics simulations based either on tight-binding or on Kohn-Sham hamiltonians. The method leads to an algorithm whose computational cost scales linearly with the system size. The key features of our approach are (i) an orbital formulation with single particle wavefunctions constrained to be localized in given regions of space, and (ii) an energy functional which does not require either explicit orthogonalization of the electronic orbitals, or inversion of an overlap matrix. The foundations and accuracy of the approach and the performances of the algorithm are discussed, and illustrated with several numerical examples including Kohn-Sham hamiltonians. In particular we present calculations with tight-binding hamiltonians for diamond, graphite, a carbon linear chain and liquid carbon at low pressure. Even for a complex case such as liquid carbon – a disordered metallic system with differently coordinated atoms – the agreement between standard diagonalization schemes and our approach is very good. Our results establish the accuracy and reliability of the method for a wide class of systems and show that tight binding molecular dynamics simulations with a few thousand atoms are feasible on

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab initio calculations in a uniform magnetic field using periodic supercells.

We present a formulation of ab initio electronic structure calculations in a finite magnetic field, which retains the simplicity and efficiency of techniques widely used in first principles molecular dynamics simulations, based on plane-wave basis sets and Fourier transforms. In addition we discuss results obtained with this method for the energy spectrum of interacting electrons in quantum wel...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Simulations of nanocrystals under pressure: combining electronic enthalpy and linear-scaling density-functional theory.

We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. ...

متن کامل

Structural and electronic properties of quantum dot surfaces

We report on recent progress in studying the structural, electronic and optical properties of Si and Ge quantum dots, using first principles calculations. We used both ab initio molecular dynamics techniques and quantum monte carlo calculations to unravel the effects of different surface structures and passivations on the properties of Si and Ge dots. Here we discuss the results on the effects ...

متن کامل

Quantum and Classical Molecular Dynamics Simulations of Hydrophobic Hydration Structure around Small Solutes

The Journal of Physical Chemistry B is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Article Quantum and Classical Molecular Dynamics Simulations of Hydrophobic Hydration Structure around Small Solutes Jeffrey C. Grossman, Eric Schwegler, and Giulia Galli J. Phys. Chem. B, 2004, 108 (40), 15865-15872 • DOI: 10.1021/jp0470187 Downloaded from http://...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994